Calibrated Out-of-Distribution Detection with a Generic Representation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371043" target="_blank" >RIV/68407700:21230/23:00371043 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ICCVW60793.2023.00485" target="_blank" >https://doi.org/10.1109/ICCVW60793.2023.00485</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCVW60793.2023.00485" target="_blank" >10.1109/ICCVW60793.2023.00485</a>
Alternative languages
Result language
angličtina
Original language name
Calibrated Out-of-Distribution Detection with a Generic Representation
Original language description
Out-of-distribution detection is a common issue in deploying vision models in practice and solving it is an essential building block in safety critical applications. Most of the existing OOD detection solutions focus on improving the OOD robustness of a classification model trained exclusively on in-distribution (ID) data. In this work, we take a different approach and propose to leverage generic pre-trained representation. We propose a novel OOD method, called GROOD, that formulates the OOD detection as a Neyman-Pearson task with well calibrated scores and which achieves excellent performance, predicated by the use of a good generic representation. Only a trivial training process is required for adapting GROOD to a particular problem. The method is simple, general, efficient, calibrated and with only a few hyper-parameters. The method achieves state-of-the-art performance on a number of OOD benchmarks, reaching near perfect performance on several of them. The source code is available at https://github.com/vojirt/GROOD.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ICCVW2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
ISBN
979-8-3503-0744-3
ISSN
2473-9936
e-ISSN
2473-9944
Number of pages
10
Pages from-to
4509-4518
Publisher name
IEEE
Place of publication
Anchorage, Alaska
Event location
Paris
Event date
Oct 2, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001156680304064