All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Normal Functionals on Lipschitz Spaces are Weak* Continuous

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00350425" target="_blank" >RIV/68407700:21240/22:00350425 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/S147474802100013X" target="_blank" >https://doi.org/10.1017/S147474802100013X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S147474802100013X" target="_blank" >10.1017/S147474802100013X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Normal Functionals on Lipschitz Spaces are Weak* Continuous

  • Original language description

    Let Lip_0(M) be the space of Lipschitz functions on a complete metric space M that vanish at a base point. We prove that every normal functional in Lip_0(M)* is weak* continuous; that is, in order to verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed by N. J. Kalton for functionals in the predual of Lip_0(M) can be partially extended to Lip_0(M)*.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ18-00960Y" target="_blank" >GJ18-00960Y: Selected topics in non-linear functional analysis and approximation theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Institute of Mathematics of Jussieu

  • ISSN

    1474-7480

  • e-ISSN

    1475-3030

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    2093-2102

  • UT code for WoS article

    000774569700001

  • EID of the result in the Scopus database

    2-s2.0-85103952127