Normal Functionals on Lipschitz Spaces are Weak* Continuous
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00350425" target="_blank" >RIV/68407700:21240/22:00350425 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1017/S147474802100013X" target="_blank" >https://doi.org/10.1017/S147474802100013X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S147474802100013X" target="_blank" >10.1017/S147474802100013X</a>
Alternative languages
Result language
angličtina
Original language name
Normal Functionals on Lipschitz Spaces are Weak* Continuous
Original language description
Let Lip_0(M) be the space of Lipschitz functions on a complete metric space M that vanish at a base point. We prove that every normal functional in Lip_0(M)* is weak* continuous; that is, in order to verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed by N. J. Kalton for functionals in the predual of Lip_0(M) can be partially extended to Lip_0(M)*.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ18-00960Y" target="_blank" >GJ18-00960Y: Selected topics in non-linear functional analysis and approximation theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Institute of Mathematics of Jussieu
ISSN
1474-7480
e-ISSN
1475-3030
Volume of the periodical
21
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
2093-2102
UT code for WoS article
000774569700001
EID of the result in the Scopus database
2-s2.0-85103952127