On Morphisms Preserving Palindromic Richness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00356431" target="_blank" >RIV/68407700:21240/22:00356431 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/22:00356431
Result on the web
<a href="https://doi.org/10.3233/FI-222102" target="_blank" >https://doi.org/10.3233/FI-222102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FI-222102" target="_blank" >10.3233/FI-222102</a>
Alternative languages
Result language
angličtina
Original language name
On Morphisms Preserving Palindromic Richness
Original language description
Itisknownthateachwordoflengthncontainsatmostn+1distinctpalindromes.A finite rich word is a word with maximal number of palindromic factors. The definition of palin- dromic richness can be naturally extended to infinite words. Sturmian words and Rote comple- mentary symmetric sequences form two classes of binary rich words, while episturmian words and words coding symmetric d-interval exchange transformations give us other examples on larger al- phabets. In this paper we look for morphisms of the free monoid, which allow us to construct new rich words from already known rich words. We focus on morphisms in Class Pret. This class contains morphisms injective on the alphabet and satisfying a particular palindromicity property: for every morphism φ in the class there exists a palindrome w such that φ(a)w is a first complete return word to w for each letter a. We characterize Pret morphisms which preserve richness over a binary alphabet. We also study marked Pret morphisms acting on alphabets with more letters. In particular we show that every Arnoux-Rauzy morphism is conjugated to a morphism in Class Pret and that it preserves richness.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta Informaticae
ISSN
0169-2968
e-ISSN
1875-8681
Volume of the periodical
185
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000772192700001
EID of the result in the Scopus database
2-s2.0-85127384414