Infinite words with finite defect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00174418" target="_blank" >RIV/68407700:21340/11:00174418 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aam.2010.11.006" target="_blank" >http://dx.doi.org/10.1016/j.aam.2010.11.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aam.2010.11.006" target="_blank" >10.1016/j.aam.2010.11.006</a>
Alternative languages
Result language
angličtina
Original language name
Infinite words with finite defect
Original language description
In this paper, we provide a new characterization of uniformly recurrent words with finite defect based on a relation between the palindromic and factor complexity. Furthermore, we introduce a class of morphisms Pret closed under composition and we show that a uniformly recurrent word with finite defect is an image of a rich (also called full) word under a morphism of class Pret. This class is closely related to the well-known class P defined by Hof, Knill, and Simon; every morphism from Pret is conjugate to a morphism of class P.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Mathematics
ISSN
0196-8858
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
562-574
UT code for WoS article
000294141800008
EID of the result in the Scopus database
—