On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00359294" target="_blank" >RIV/68407700:21240/22:00359294 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.ESA.2022.22" target="_blank" >https://doi.org/10.4230/LIPIcs.ESA.2022.22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ESA.2022.22" target="_blank" >10.4230/LIPIcs.ESA.2022.22</a>
Alternative languages
Result language
angličtina
Original language name
On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations
Original language description
For many problems, the important instances from practice possess certain structure that one should reflect in the design of specific algorithms. As data reduction is an important and inextricable part of today’s computation, we employ one of the most successful models of such precomputation - the kernelization. Within this framework, we focus on Traveling Salesperson Problem (TSP) and some of its generalizations. We provide a kernel for TSP with size polynomial in either the feedback edge set number or the size of a modulator to constant-sized components. For its generalizations, we also consider other structural parameters such as the vertex cover number and the size of a modulator to constant-sized paths. We complement our results from the negative side by showing that the existence of a polynomial-sized kernel with respect to the fractioning number, the combined parameter maximum degree and treewidth, and, in the case of {Subset TSP}, modulator to disjoint cycles (i.e., the treewidth two graphs) is unlikely.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
30th Annual European Symposium on Algorithms (ESA 2022)
ISBN
978-3-95977-247-1
ISSN
—
e-ISSN
1868-8969
Number of pages
16
Pages from-to
"22:1"-"22:16"
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl
Event location
Postdam
Event date
Sep 5, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—