All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural-Network-Based Estimation of Normal Distributions in Black-Box Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360763" target="_blank" >RIV/68407700:21240/22:00360763 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/22:10450929 RIV/68407700:21340/22:00360763

  • Result on the web

    <a href="https://doi.org/10.14428/esann/2022.ES2022-113" target="_blank" >https://doi.org/10.14428/esann/2022.ES2022-113</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14428/esann/2022.ES2022-113" target="_blank" >10.14428/esann/2022.ES2022-113</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural-Network-Based Estimation of Normal Distributions in Black-Box Optimization

  • Original language description

    The paper presents a novel application of artificial neural networks (ANNs) in the context of surrogate models for black-box optimization, i.e. optimization of objective functions that are accessed through empirical evaluation. For active learning of surrogate models, a very important role plays learning of multidimensional normal distributions, for which Gaussian processes (GPs) have been traditionally used. On the other hand, the research reported in this paper evaluated the applicability of two ANN-based methods to this end: combining GPs with ANNs and learning normal distributions with evidential ANNs. After methods sketch, the paper brings their comparison on a large collection of data from surrogate-assisted black-box optimization. It shows that combining GPs using linear covariance functions with ANNs yields lower errors than the investigated methods of evidential learning.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LM2018131" target="_blank" >LM2018131: Czech National Infrastructure for Biological Data</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ESANN 2022 proceedings

  • ISBN

    978-2-87587-084-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    187-192

  • Publisher name

    Ciaco - i6doc.com

  • Place of publication

    Louvain la Neuve

  • Event location

    Bruges

  • Event date

    Oct 5, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article