All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Polynomial kernels for tracking shortest paths

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00359993" target="_blank" >RIV/68407700:21240/23:00359993 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ipl.2022.106315" target="_blank" >https://doi.org/10.1016/j.ipl.2022.106315</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ipl.2022.106315" target="_blank" >10.1016/j.ipl.2022.106315</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Polynomial kernels for tracking shortest paths

  • Original language description

    Given an undirected graph G = (V , E), vertices s,t element V , and an integer k, Tracking Shortest Paths requires deciding whether there exists a set of k vertices T ? V such that for any two distinct shortest paths between s and t, say P1 and P2, we have T ∩ V (P1) != T ∩ V (P2). In this paper, we give the first polynomial size kernel for the problem. Specifically we show the existence of a kernel with O(k2) vertices and edges in general graphs and a kernel with O(k) vertices and edges in planar graphs for the Tracking Paths in DAG problem. This problem admits a polynomial parameter transformation to Tracking Shortest Paths, and this implies a kernel with O(k4) vertices and edges for Tracking Shortest Paths in general graphs and a kernel with O(k2) vertices and edges in planar graphs. Based on the above we also give a single exponential algorithm for Tracking Shortest Paths in planar graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Information Processing Letters

  • ISSN

    0020-0190

  • e-ISSN

    1872-6119

  • Volume of the periodical

    179

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

    000860990000003

  • EID of the result in the Scopus database

    2-s2.0-85138122026