Polynomial kernels for tracking shortest paths
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00359993" target="_blank" >RIV/68407700:21240/23:00359993 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ipl.2022.106315" target="_blank" >https://doi.org/10.1016/j.ipl.2022.106315</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ipl.2022.106315" target="_blank" >10.1016/j.ipl.2022.106315</a>
Alternative languages
Result language
angličtina
Original language name
Polynomial kernels for tracking shortest paths
Original language description
Given an undirected graph G = (V , E), vertices s,t element V , and an integer k, Tracking Shortest Paths requires deciding whether there exists a set of k vertices T ? V such that for any two distinct shortest paths between s and t, say P1 and P2, we have T ∩ V (P1) != T ∩ V (P2). In this paper, we give the first polynomial size kernel for the problem. Specifically we show the existence of a kernel with O(k2) vertices and edges in general graphs and a kernel with O(k) vertices and edges in planar graphs for the Tracking Paths in DAG problem. This problem admits a polynomial parameter transformation to Tracking Shortest Paths, and this implies a kernel with O(k4) vertices and edges for Tracking Shortest Paths in general graphs and a kernel with O(k2) vertices and edges in planar graphs. Based on the above we also give a single exponential algorithm for Tracking Shortest Paths in planar graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Processing Letters
ISSN
0020-0190
e-ISSN
1872-6119
Volume of the periodical
179
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
—
UT code for WoS article
000860990000003
EID of the result in the Scopus database
2-s2.0-85138122026