All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Kernels for d-Path Vertex Cover

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00359943" target="_blank" >RIV/68407700:21240/22:00359943 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.MFCS.2022.29" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2022.29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2022.29" target="_blank" >10.4230/LIPIcs.MFCS.2022.29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Kernels for d-Path Vertex Cover

  • Original language description

    In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d>= 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with O(dk^d) edges. We improve on this by giving better kernels. Specifically, we give kernels with O(k^2) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with O(k^4d^{2d+9}) vertices and edges for general d.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

  • ISBN

    978-3-95977-256-3

  • ISSN

  • e-ISSN

    1868-8969

  • Number of pages

    14

  • Pages from-to

    "29:1"-"29:14"

  • Publisher name

    Schloss Dagstuhl - Leibniz Center for Informatics

  • Place of publication

    Wadern

  • Event location

    Vienna

  • Event date

    Aug 22, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article