On Kernels for d-Path Vertex Cover
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00359943" target="_blank" >RIV/68407700:21240/22:00359943 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.MFCS.2022.29" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2022.29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2022.29" target="_blank" >10.4230/LIPIcs.MFCS.2022.29</a>
Alternative languages
Result language
angličtina
Original language name
On Kernels for d-Path Vertex Cover
Original language description
In this paper we study the kernelization of the d-Path Vertex Cover (d-PVC) problem. Given a graph G, the problem requires finding whether there exists a set of at most k vertices whose removal from G results in a graph that does not contain a path (not necessarily induced) with d vertices. It is known that d-PVC is NP-complete for d>= 2. Since the problem generalizes to d-Hitting Set, it is known to admit a kernel with O(dk^d) edges. We improve on this by giving better kernels. Specifically, we give kernels with O(k^2) vertices and edges for the cases when d = 4 and d = 5. Further, we give a kernel with O(k^4d^{2d+9}) vertices and edges for general d.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)
ISBN
978-3-95977-256-3
ISSN
—
e-ISSN
1868-8969
Number of pages
14
Pages from-to
"29:1"-"29:14"
Publisher name
Schloss Dagstuhl - Leibniz Center for Informatics
Place of publication
Wadern
Event location
Vienna
Event date
Aug 22, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—