Faster FPT algorithm for 5-path vertex cover
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00333824" target="_blank" >RIV/68407700:21240/19:00333824 - isvavai.cz</a>
Result on the web
<a href="http://drops.dagstuhl.de/opus/volltexte/2019/10976/" target="_blank" >http://drops.dagstuhl.de/opus/volltexte/2019/10976/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.32" target="_blank" >10.4230/LIPIcs.MFCS.2019.32</a>
Alternative languages
Result language
angličtina
Original language name
Faster FPT algorithm for 5-path vertex cover
Original language description
The problem of textsc{$d$-Path Vertex Cover, $d$-PVC} lies in determining a subset~$F$ of vertices of a~given graph $G=(V,E)$ such that $G setminus F$ does not contain a~path on $d$ vertices. The paths we aim to cover need not to be induced. It is known that the textsc{$d$-PVC} problem is NP-complete for any $d ge 2$. When parameterized by the size of the solution $k$, textsc{5-PVC} has direct trivial algorithm with $mathcal{O}(5^kn^{mathcal{O}(1)})$ running time and, since textsc{$d$-PVC} is a special case of textsc{$d$-Hitting Set}, an algorithm running in $mathcal{O}(4.0755^kn^{mathcal{O}(1)})$ time is known. In this paper we present an iterative compression algorithm that solves the textsc{5-PVC} problem in $mathcal{O}(4^kn^{mathcal{O}(1)})$ time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)
ISBN
978-3-95977-117-7
ISSN
—
e-ISSN
1868-8969
Number of pages
13
Pages from-to
"32:1"-"32:13"
Publisher name
Schloss Dagstuhl - Leibniz Center for Informatics
Place of publication
Wadern
Event location
Aachen
Event date
Aug 26, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—