Reachability in graph transformation systems and slice languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00454008" target="_blank" >RIV/67985840:_____/15:00454008 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-21145-9_8" target="_blank" >http://dx.doi.org/10.1007/978-3-319-21145-9_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-21145-9_8" target="_blank" >10.1007/978-3-319-21145-9_8</a>
Alternative languages
Result language
angličtina
Original language name
Reachability in graph transformation systems and slice languages
Original language description
In this work we show that the reachability problem for graph transformation systems is in the complexity class XP when parameterized with respect to the depth of derivations and the cutwidth of the source graph. More precisely, we show that for any set R of graph transformation rules, one can determine in time f(c,d)G H g(c,d) whether a graph G of cutwidth c can be transformed into a graph H in depth at most d by the application of graph transformation rules from R . In particular, our algorithm runs in polynomial time when c and d are constants. On the other hand, we show that the problem becomes NP-hard if we allow c=O(G) and d=5 . In the case in which all transformation rules are monotone we get an algorithm running in time f(c,d)⋅G O(c) ⋅H . To prove our main theorems we will establish an interesting connection between graph transformation systems and regular slice languages.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Transformation
ISBN
978-3-319-21144-2
ISSN
0302-9743
e-ISSN
—
Number of pages
17
Pages from-to
121-137
Publisher name
Springer
Place of publication
Cham
Event location
L'Aquila
Event date
Jun 21, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000364104800008