All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reachability in graph transformation systems and slice languages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00454008" target="_blank" >RIV/67985840:_____/15:00454008 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-21145-9_8" target="_blank" >http://dx.doi.org/10.1007/978-3-319-21145-9_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-21145-9_8" target="_blank" >10.1007/978-3-319-21145-9_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reachability in graph transformation systems and slice languages

  • Original language description

    In this work we show that the reachability problem for graph transformation systems is in the complexity class XP when parameterized with respect to the depth of derivations and the cutwidth of the source graph. More precisely, we show that for any set R of graph transformation rules, one can determine in time f(c,d)G H g(c,d) whether a graph G of cutwidth c can be transformed into a graph H in depth at most d by the application of graph transformation rules from R . In particular, our algorithm runs in polynomial time when c and d are constants. On the other hand, we show that the problem becomes NP-hard if we allow c=O(G) and d=5 . In the case in which all transformation rules are monotone we get an algorithm running in time f(c,d)⋅G O(c) ⋅H . To prove our main theorems we will establish an interesting connection between graph transformation systems and regular slice languages.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Graph Transformation

  • ISBN

    978-3-319-21144-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    121-137

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    L'Aquila

  • Event date

    Jun 21, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000364104800008