Maximizing Influence Spread through a Dynamic Social Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00360775" target="_blank" >RIV/68407700:21240/23:00360775 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1609/aaai.v37i13.27018" target="_blank" >https://doi.org/10.1609/aaai.v37i13.27018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v37i13.27018" target="_blank" >10.1609/aaai.v37i13.27018</a>
Alternative languages
Result language
angličtina
Original language name
Maximizing Influence Spread through a Dynamic Social Network
Original language description
Modern social networks are dynamic in their nature; new connections are appearing and old connections are disappearing all the time. However, in our algorithmic and complexity studies, we usually model social networks as static graphs. In this paper, we propose a new paradigm for the study of the well-known Target Set Selection problem, which is a fundamental problem in viral marketing and the spread of opinion through social networks. In particular, we use temporal graphs to capture the dynamic nature of social networks. We show that the temporal interpretation is, unsurprisingly, NP-complete in general. Then, we study computational complexity of this problem for multiple restrictions of both the threshold function and the underlying graph structure and provide multiple hardness lower-bounds.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 37th AAAI Conference on Artificial Intelligence
ISBN
—
ISSN
2159-5399
e-ISSN
2374-3468
Number of pages
2
Pages from-to
16316-16317
Publisher name
AAAI Press
Place of publication
Menlo Park
Event location
Washington, DC
Event date
Feb 7, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—