All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Smallest Synchronizing Terms of Finite Tree Automata

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368009" target="_blank" >RIV/68407700:21240/23:00368009 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-40247-0_5" target="_blank" >https://doi.org/10.1007/978-3-031-40247-0_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40247-0_5" target="_blank" >10.1007/978-3-031-40247-0_5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Smallest Synchronizing Terms of Finite Tree Automata

  • Original language description

    This paper deals with properties of synchronizing terms for finite tree automata, which is a generalization of the synchronization principle of deterministic finite string automata (DFA) and such terms correspond to a connected subgraph, where a state in the root is always the same regardless of states of subtrees attached to it. We ask, what is the maximum height of the smallest synchronizing term of a deterministic bottom-up tree automaton (DFTA) with n states, which naturally leads to two types of synchronizing terms, called weak and strong, that depend on whether a variable, i.e., a placeholder for a subtree, must be present in at least one leaf or all of them. We prove that the maximum height in the case of weak synchronization has a theoretical upper bound sl(????)+????-1, where sl(????) is the maximum length of the shortest synchronizing string of an n-state DFAs. For strong synchronization, we prove exponential bounds. We provide a theoretical upper bound of 2^????-????-1 for the height and two constructions of automata approaching it. One achieves the height of Θ(2^(????-root ????)) with an alphabet of linear size, and the other achieves 2^(????-1)-1 with an alphabet of quadratic size.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Implementation and Application of Automata

  • ISBN

    978-3-031-40247-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    79-90

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Famagusta

  • Event date

    Sep 19, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001360247600005