All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lower Bounds on Avoiding Thresholds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50019040" target="_blank" >RIV/62690094:18450/21:50019040 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204" target="_blank" >https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.46" target="_blank" >10.4230/LIPIcs.MFCS.2021.46</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lower Bounds on Avoiding Thresholds

  • Original language description

    For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be in any state from the subset regardless of its initial state. A subset that admits an avoiding word is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable subset of size k can be avoided with a word no longer than that number. We study the problem of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a general construction of strongly connected DFAs with n states and the k-avoiding threshold in Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for every number of states n in the class of strongly connected synchronizing binary DFAs, which is supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of synchronizing automata to improve upper bounds on the length of the shortest reset words.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)

  • ISBN

    978-3-95977-201-3

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    "Article number: 46"

  • Publisher name

    LIPICS

  • Place of publication

    Dagstuhl

  • Event location

    Tallinn

  • Event date

    Aug 23, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article