Lower Bounds on Avoiding Thresholds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50019040" target="_blank" >RIV/62690094:18450/21:50019040 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204" target="_blank" >https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.46" target="_blank" >10.4230/LIPIcs.MFCS.2021.46</a>
Alternative languages
Result language
angličtina
Original language name
Lower Bounds on Avoiding Thresholds
Original language description
For a DFA, a word avoids a subset of states, if after reading that word the automaton cannot be in any state from the subset regardless of its initial state. A subset that admits an avoiding word is avoidable. The k-avoiding threshold of a DFA is the smallest number such that every avoidable subset of size k can be avoided with a word no longer than that number. We study the problem of determining the maximum possible k-avoiding thresholds. For every fixed k ≥ 1, we show a general construction of strongly connected DFAs with n states and the k-avoiding threshold in Θ(nk). This meets the known upper bound for k ≥ 3. For k = 1 and k = 2, the known upper bounds are respectively in O(n2) and in O(n3). For k = 1, we show that 2n − 3 is attainable for every number of states n in the class of strongly connected synchronizing binary DFAs, which is supposed to be the best possible in the class of all DFAs for n ≥ 8. For k = 2, we show that the conjectured solution for k = 1 (an upper bound in O(n)) also implies a tight upper bound in O(n2) on 2-avoiding threshold. Finally, we discuss the possibility of using k-avoiding thresholds of synchronizing automata to improve upper bounds on the length of the shortest reset words.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
ISBN
978-3-95977-201-3
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
"Article number: 46"
Publisher name
LIPICS
Place of publication
Dagstuhl
Event location
Tallinn
Event date
Aug 23, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—