All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamics of the Independence Number and Automata Synchronization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327649" target="_blank" >RIV/68407700:21230/18:00327649 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-98654-8_31" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-98654-8_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-98654-8_31" target="_blank" >10.1007/978-3-319-98654-8_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamics of the Independence Number and Automata Synchronization

  • Original language description

    We study the lengths of synchronizing words produced by the classical greedy compression algorithm. We associate a sequence of graphs with every synchronizing automaton and rely on evolution of the independence number to bound the lengths of produced words. By leveraging graph theoretical results we show that in many cases automata with good extension properties have good compression properties as well. More precisely, we show that the compression algorithm will produce a synchronizing word of length O(n^2log(n)) on cyclic, regular and strongly-transitive automata with n states, which is not far from the best possible bound of (n-1)^2. Furthermore, we provide a relatively simple proof that every n-state automaton has a synchronizing word of length at most (1/4)n^3+O(n^2) .

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-05872S" target="_blank" >GA16-05872S: Probabilistic Graphical Models and Deep Learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    International Conference on Developments in Language Theory

  • ISBN

    978-3-319-98653-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    379-391

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Tokyo

  • Event date

    Sep 10, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article