New classes of quadratically integrable systems with velocity dependent potentials: non-subgroup type cases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00369544" target="_blank" >RIV/68407700:21240/23:00369544 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/23:00369544
Result on the web
<a href="https://doi.org/10.1140/epjp/s13360-023-04464-6" target="_blank" >https://doi.org/10.1140/epjp/s13360-023-04464-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-023-04464-6" target="_blank" >10.1140/epjp/s13360-023-04464-6</a>
Alternative languages
Result language
angličtina
Original language name
New classes of quadratically integrable systems with velocity dependent potentials: non-subgroup type cases
Original language description
We study quadratic integrability of systems with velocity dependent potentials in three-dimensional Euclidean space. Unlike in the case with only scalar potential, quadratic integrability with velocity dependent potentials does not imply separability in the configuration space. The leading order terms in the pairs of commuting integrals can either generalize or have no relation to the forms leading to separation in the absence of a vector potential. We call such pairs of integrals generalized, to distinguish them from the standard ones, which would correspond to separation. Here we focus on three cases of generalized non-subgroup type integrals, namely elliptic cylindrical, prolate/oblate spheroidal and circular parabolic integrals, together with one case not related to any coordinate system. We find two new integrable systems, non-separable in the configuration space, both with generalized elliptic cylindrical integrals. In the other cases, all systems found were already known and possess standard pairs of integrals. In the limit of vanishing vector potential, both systems reduce to free motion and therefore separate in every orthogonal coordinate system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
24
Pages from-to
1-24
UT code for WoS article
001075707200010
EID of the result in the Scopus database
2-s2.0-85172394124