Quantum cylindrical integrability in magnetic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00370201" target="_blank" >RIV/68407700:21340/23:00370201 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.21468/SciPostPhysProc.14.032" target="_blank" >https://doi.org/10.21468/SciPostPhysProc.14.032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21468/SciPostPhysProc.14.032" target="_blank" >10.21468/SciPostPhysProc.14.032</a>
Alternative languages
Result language
angličtina
Original language name
Quantum cylindrical integrability in magnetic fields
Original language description
We present the classification of quadratically integrable systems of the cylindrical type with magnetic fields in quantum mechanics. Following the direct method used in classical mechanics by [F Fournier et al 2020 J. Phys. A: Math. Theor. 53 085203] to facilitate the comparison, the cases which may a priori differ yield 2 systems without any correction and 2 with it. In all of them, the magnetic field B coincides with the classical one, only the scalar potential W may contain a ℏ^2-dependent correction. Two of the systems have both cylindrical integrals quadratic in momenta and are therefore not separable. These results form a basis for a prospective study of superintegrability.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SciPost Physics Proceedings
ISBN
—
ISSN
2666-4003
e-ISSN
2666-4003
Number of pages
8
Pages from-to
—
Publisher name
SciPost Foundation
Place of publication
Amsterdam
Event location
Strasbourg
Event date
Jul 17, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—