All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quantum cylindrical integrability in magnetic fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00370201" target="_blank" >RIV/68407700:21340/23:00370201 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.21468/SciPostPhysProc.14.032" target="_blank" >https://doi.org/10.21468/SciPostPhysProc.14.032</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21468/SciPostPhysProc.14.032" target="_blank" >10.21468/SciPostPhysProc.14.032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quantum cylindrical integrability in magnetic fields

  • Original language description

    We present the classification of quadratically integrable systems of the cylindrical type with magnetic fields in quantum mechanics. Following the direct method used in classical mechanics by [F Fournier et al 2020 J. Phys. A: Math. Theor. 53 085203] to facilitate the comparison, the cases which may a priori differ yield 2 systems without any correction and 2 with it. In all of them, the magnetic field B coincides with the classical one, only the scalar potential W may contain a ℏ^2-dependent correction. Two of the systems have both cylindrical integrals quadratic in momenta and are therefore not separable. These results form a basis for a prospective study of superintegrability.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    SciPost Physics Proceedings

  • ISBN

  • ISSN

    2666-4003

  • e-ISSN

    2666-4003

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    SciPost Foundation

  • Place of publication

    Amsterdam

  • Event location

    Strasbourg

  • Event date

    Jul 17, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article