Computing Largest Minimum Color-Spanning Intervals of Imprecise Points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375488" target="_blank" >RIV/68407700:21240/24:00375488 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-55598-5_6" target="_blank" >https://doi.org/10.1007/978-3-031-55598-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-55598-5_6" target="_blank" >10.1007/978-3-031-55598-5_6</a>
Alternative languages
Result language
angličtina
Original language name
Computing Largest Minimum Color-Spanning Intervals of Imprecise Points
Original language description
We study a geometric facility location problem under imprecision. Given n unit intervals in the real line, each with one of k colors, the goal is to place one point in each interval such that the resulting minimum color-spanning interval is as large as possible. A minimum color-spanning interval is an interval of minimum size that contains at least one point from a given interval of each color. We prove that if the input intervals are pairwise disjoint, the problem can be solved in O(n) time, even for intervals of arbitrary length. For overlapping intervals, the problem becomes much more difficult. Nevertheless, we show that it can be solved in O(n^2 log n) time when k=2, by exploiting several structural properties of candidate solutions, combined with a number of advanced algorithmic techniques. Interestingly, this shows a sharp contrast with the 2-dimensional version of the problem, recently shown to be NP-hard.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
16th Latin American Theoretical Informatics Symposium (LATIN 2024)
ISBN
978-3-031-55598-5
ISSN
1611-3349
e-ISSN
1611-3349
Number of pages
16
Pages from-to
81-96
Publisher name
Springer, Cham
Place of publication
—
Event location
Puerto Varas
Event date
Mar 18, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001214186800006