All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing Largest Minimum Color-Spanning Intervals of Imprecise Points

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375488" target="_blank" >RIV/68407700:21240/24:00375488 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-55598-5_6" target="_blank" >https://doi.org/10.1007/978-3-031-55598-5_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-55598-5_6" target="_blank" >10.1007/978-3-031-55598-5_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing Largest Minimum Color-Spanning Intervals of Imprecise Points

  • Original language description

    We study a geometric facility location problem under imprecision. Given n unit intervals in the real line, each with one of k colors, the goal is to place one point in each interval such that the resulting minimum color-spanning interval is as large as possible. A minimum color-spanning interval is an interval of minimum size that contains at least one point from a given interval of each color. We prove that if the input intervals are pairwise disjoint, the problem can be solved in O(n) time, even for intervals of arbitrary length. For overlapping intervals, the problem becomes much more difficult. Nevertheless, we show that it can be solved in O(n^2 log n) time when k=2, by exploiting several structural properties of candidate solutions, combined with a number of advanced algorithmic techniques. Interestingly, this shows a sharp contrast with the 2-dimensional version of the problem, recently shown to be NP-hard.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX23-04949X" target="_blank" >GX23-04949X: Fundamental questions of discrete geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    16th Latin American Theoretical Informatics Symposium (LATIN 2024)

  • ISBN

    978-3-031-55598-5

  • ISSN

    1611-3349

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    81-96

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Puerto Varas

  • Event date

    Mar 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001214186800006