Quantized Neural Network with Linearly Approximated Functions on Zynq FPGA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375910" target="_blank" >RIV/68407700:21240/24:00375910 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/MECO62516.2024.10577851" target="_blank" >https://doi.org/10.1109/MECO62516.2024.10577851</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MECO62516.2024.10577851" target="_blank" >10.1109/MECO62516.2024.10577851</a>
Alternative languages
Result language
angličtina
Original language name
Quantized Neural Network with Linearly Approximated Functions on Zynq FPGA
Original language description
This paper is focused on neural network implementation on FPGA. Linearly approximated functions combined with quantization are used to efficiently implement neural networks in hardware. Famous benchmarks were used for learning, evaluation, and hardware testing. Approximation-aware and quantization-aware learning were used to obtain weights for neurons in hardware. We implemented a neural network with an 8-bit architecture in VHDL and synthesized it to Zynq FPGA in Vivado. The resulting design running at 100MHz clock frequency was carefully tested against hardware-accurate models written in Wolfram Mathematica and C++. We present a decrease in FPGA resources and chip utilization compared to 16-bit architecture implementation.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 13th Mediterranean Conference on Embedded Computing (MECO)
ISBN
979-8-3503-8756-8
ISSN
2377-5475
e-ISSN
2637-9511
Number of pages
4
Pages from-to
98-101
Publisher name
Institute of Electrical and Electronic Engineers
Place of publication
Piscataway
Event location
Budva
Event date
Jun 11, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001268606200050