All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00377076" target="_blank" >RIV/68407700:21240/24:00377076 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-70381-2_2" target="_blank" >https://doi.org/10.1007/978-3-031-70381-2_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-70381-2_2" target="_blank" >10.1007/978-3-031-70381-2_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection

  • Original language description

    This study introduces a novel machine learning-based methodology for automated detection and tracking of sperm cells within microscopic video recordings, aiming to elucidate the dynamics and motion patterns of individual sperm cells as well as sperm cell bundles. At first, the method identifies sperm cells across successive frames within a video sequence, facilitating the reconstruction of each cell's trajectory over time. Subsequently, we introduce a classification algorithm that distinguishes between solitary sperm cells, clusters of adjacent cells, and cohesive sperm cell bundles, addressing a gap in existing methodologies. Finally, we employ three conventional metrics for velocity assessment: Straight Line Velocity (VSL) and Average Path Velocity (VAP) and Curvilinear velocity (VCL), to quantify the movement speed of both individual sperm cells and bundles. The approach represents a significant advancement in the automated analysis of sperm motility and aggregation phenomena, providing a robust tool for researchers to study sperm behavior with enhanced accuracy and efficiency. The integration of machine learning techniques in sperm cell detection and tracking offers promising insights into reproductive biology and fertility studies.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track

  • ISBN

    978-3-031-70380-5

  • ISSN

    2945-9133

  • e-ISSN

    1611-3349

  • Number of pages

    14

  • Pages from-to

    19-32

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Vilnius

  • Event date

    Sep 9, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001330399500002