All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting Blood Glucose Levels with LMU Recurrent Neural Networks: A Novel Computational Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00378416" target="_blank" >RIV/68407700:21240/24:00378416 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-66538-7_13" target="_blank" >https://doi.org/10.1007/978-3-031-66538-7_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-66538-7_13" target="_blank" >10.1007/978-3-031-66538-7_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting Blood Glucose Levels with LMU Recurrent Neural Networks: A Novel Computational Model

  • Original language description

    Type 1 diabetes disrupts normal blood glucose regulation due to the destruction of insulin-producing cells, necessitating insulin therapy through injections or insulin pumps. Consumer devices can forecast blood glucose levels by leveraging data from blood glucose sensors and other sources. Such predictions are valuable for informing patients about their blood glucose trajectory and supporting various downstream applications. Numerous machine-learning models have been explored for blood glucose prediction. This study introduces a novel application of Legendre Memory Units for blood glucose prediction. Employing a multivariate time series, predictions are made with 30-minute and 60-minute horizons. The proposed model is comparable with state-of-the-art models on the OhioT1DM dataset, encompassing eight weeks of data from 12 distinct patients.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence in Medicine, 22nd International Conference, AIME 2024, Salt Lake City, UT, USA, July 9–12, 2024, Proceedings, Part I

  • ISBN

    978-3-031-66538-7

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    117-127

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Salt Lake City

  • Event date

    Jul 9, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001295129500013