All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modeling of mixed data for Poisson prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F20%3A00341637" target="_blank" >RIV/68407700:21260/20:00341637 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/SACI49304.2020.9118836" target="_blank" >https://doi.org/10.1109/SACI49304.2020.9118836</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SACI49304.2020.9118836" target="_blank" >10.1109/SACI49304.2020.9118836</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modeling of mixed data for Poisson prediction

  • Original language description

    The paper deals with the task of modeling mixed continuous Gaussian and discrete Poisson data observed on a multimodal system. The proposed solution is based on recursive algorithms of Bayesian mixture estimation. The main contributions of the approach are: (i) the use of the discretized information of normal variables in the form of their clusters in order to keep the one-pass recursive estimation methodology and (ii) the prediction of the multimodal Poisson variable. Experiments with simulated and real data are presented.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IEEE 14th International Symposium on Applied Computational Intelligence and Informatics SACI 2020

  • ISBN

    978-1-7281-7377-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    77-82

  • Publisher name

    IEEE Hungary Section, University Obuda

  • Place of publication

    Budapest

  • Event location

    Timisoara

  • Event date

    May 21, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article