All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prediction of Multimodal Poisson Variable using Discretization of Gaussian Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F21%3A00544576" target="_blank" >RIV/67985556:_____/21:00544576 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21260/21:00350794

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0010575006000608" target="_blank" >http://dx.doi.org/10.5220/0010575006000608</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010575006000608" target="_blank" >10.5220/0010575006000608</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prediction of Multimodal Poisson Variable using Discretization of Gaussian Data

  • Original language description

    The paper deals with predicting a discrete target variable described by the Poisson distribution based on the discretized Gaussian explanatory data under condition of the multimodality of a system observed. The discretization is performed using the recursive mixture-based clustering algorithms under Bayesian methodology. The proposed approach allows to estimate the Gaussian and Poisson models existing for each discretization interval of explanatory data and use them for the prediction. The main contributions of the approach include: (i) modeling the Poisson variable based on the cluster analysis of explanatory continuous data, (ii) the discretization approach based on recursive mixture estimation theory, (iii) the online prediction of the Poisson variable based on available Gaussian data discretized in real time. Results of illustrative experiments and comparison with the Poisson regression is demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/8A19009" target="_blank" >8A19009: Arrowhead Tools for Engineering of Digitalisation Solutions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics

  • ISBN

    978-989-758-522-7

  • ISSN

    2184-2809

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    600-608

  • Publisher name

    Scitepress

  • Place of publication

    Setúbal

  • Event location

    Setúbal (online)

  • Event date

    Jul 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article