All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Count Predictive Model with Mixed Categorical and Count Explanatory Variables

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575361" target="_blank" >RIV/67985556:_____/23:00575361 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21260/23:00368072

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Count Predictive Model with Mixed Categorical and Count Explanatory Variables

  • Original language description

    The paper considers the problem of online prediction of a count variable based on real-time explanatory data of mixed count and categorical nature. The presented solution is based on (i) recursive Bayesian estimation of a mixture model of Poisson-distributed explanatory counts, using the categorical explanatory variable as a measurable pointer of the mixture, (ii) construction of a mixture of local Poisson regressions on the clustered data, and (iii) use of the pre-estimated mixtures for online prediction of the target count using actual measured explanatory data. The latter is one of the main contributions of the proposed approach. In addition, the dynamic model of the categorical explanatory variable preserves the functionality of the algorithm in case of its measurement failure. The experiments with simulations and real data report lower prediction errors compared to theoretical counterparts.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/8A21009" target="_blank" >8A21009: Embedded storage elements on next MCU generation ready for AI on the edge</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the The 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) IDAACS'2023

  • ISBN

    979-8-3503-5804-9

  • ISSN

    2770-4254

  • e-ISSN

    2770-4254

  • Number of pages

    6

  • Pages from-to

    51-56

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Dortmund

  • Event date

    Sep 7, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article