Using Poisson proximity-based weights for traffic flow state prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00575836" target="_blank" >RIV/67985556:_____/23:00575836 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21260/23:00368479
Result on the web
<a href="http://nnw.cz/doi/2023/NNW.2023.33.017.pdf" target="_blank" >http://nnw.cz/doi/2023/NNW.2023.33.017.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2023.33.017" target="_blank" >10.14311/NNW.2023.33.017</a>
Alternative languages
Result language
angličtina
Original language name
Using Poisson proximity-based weights for traffic flow state prediction
Original language description
The development of traffic state prediction algorithms embedded in intelligent transportation systems is of great importance for improving traffic conditions for drivers and pedestrians. Despite the large number of prediction methods, existing limitations still confirm the need to find a systematic solution and its adaptation to specific traffic data. This paper focuses on the relationship between traffic flow states in different urban locations, where these states are identified as clusters of traffic counts. Extending the recursive Bayesian mixture estimation theory to the Poisson mixtures, the paper uses the mixture pointers to construct the traffic state prediction model. Using the predictive model, the cluster at the target urban location is predicted based on the traffic counts measured in real time at the explanatory urban location. The main contributions of this study are: (i) recursive identification and prediction of the traffic state at each time instant, (ii) straightforward Poisson mixture initialization, and (iii) systematic theoretical background of the prediction approach. Results of testing the prediction algorithm on real traffic counts are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/8A21009" target="_blank" >8A21009: Embedded storage elements on next MCU generation ready for AI on the edge</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
25
Pages from-to
291-315
UT code for WoS article
001075119400005
EID of the result in the Scopus database
2-s2.0-85175788005