Machine Learning Image Recognition for GNSS Jamming Signals Categorization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00382199" target="_blank" >RIV/68407700:21260/24:00382199 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.14311/NNW.2024.34.019" target="_blank" >https://doi.org/10.14311/NNW.2024.34.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2024.34.019" target="_blank" >10.14311/NNW.2024.34.019</a>
Alternative languages
Result language
angličtina
Original language name
Machine Learning Image Recognition for GNSS Jamming Signals Categorization
Original language description
Global Navigation Satellite Systems are a critical positioning, navigation, and timing source for various industries. However, their weak signal on Earth’s surface makes them vulnerable to jamming. This paper explores the use of machine learning image recognition for categorizing GNSS jamming signals. The study uses data from a long-term monitoring campaign, with over 2,000 jamming events recorded. Seven commonly used jamming signal types were analyzed using the Residual Neural Networks (ResNet). Five different ResNet models with 18 to 152 layers were evaluated, with the best performing achieving a precision greater than 90% in determining the correct jamming signal category.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20304 - Aerospace engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
2336-4335
Volume of the periodical
34
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
341-360
UT code for WoS article
001437878400002
EID of the result in the Scopus database
2-s2.0-86000143825