All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automorphisms of the Fine Granding of Sl(n,C) Associated with the Generalized Pauli Matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F02%3A04073808" target="_blank" >RIV/68407700:21340/02:04073808 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automorphisms of the Fine Granding of Sl(n,C) Associated with the Generalized Pauli Matrices

  • Original language description

    We consider the grading of sl(n,C) by the group Pi(n) of generalized Pauli matrices. The grading decomposes the Lie algebra into n(2)-1 one-dimensional subspaces. In the article we demonstrate that the normalizer of grading decomposition of sl(n,C) in Pi(n) is the group SL(2,Z(n)), where Z(n) is the cyclic group of order n. As an example we consider sl(3,C) graded by Pi(3) and all contractions preserving that grading. We show that the set of 48 quadratic equations for grading parameters splits into justtwo orbits of the normalizer of the grading in Pi(3).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    43

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1083-1094

  • UT code for WoS article

  • EID of the result in the Scopus database