Minimum Information Loss Cluster Analysis for Categorical Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F06%3A00125818" target="_blank" >RIV/68407700:21340/06:00125818 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Minimum Information Loss Cluster Analysis for Categorical Data
Original language description
The EM algorithm has been used repeatedly to identify latent classes in categorical data by estimating finite distribution mixtures of product components. Unfortunately, the underlying mixtures are not uniquely identifiable and moreover, the estimated mixture parameters are starting-point dependent. For this reason we assume the latent class model only to define a set of elementary properties and the related statistical decision problem. In order to avoid the problem of unique identification of latent classes we propose a hierarchical ``bottom up'' cluster analysis based on unifying the latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Doktorandské dny 2006
ISBN
80-01-03554-9
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Praha
Event date
Nov 10, 2006
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—