On the Spectrum of a Bent Chain Graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F08%3A04146924" target="_blank" >RIV/68407700:21340/08:04146924 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/08:00314243
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Spectrum of a Bent Chain Graph
Original language description
We study Schrödinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by ?-couplings with a parameter alpha in R. If the graph is 'straight', i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum with all the gaps open whenever ? not equal 0. We consider a 'bending' deformation of the chain consisting of changing one position at a single ring and show that it gives rise to eigenvalues in the open spectral gaps. We analyze dependence of these eigenvalues on the coupling ? and the 'bending angle' as well as resonances of the system coming from the bending. We also discuss the behaviour of the eigenvalues and resonances at the edges of the spectral bands.
Czech name
O spektru ohnutého řetězového grafu
Czech description
Vyšetřujeme spektrum řetězového grafu "ohnutého" v vybrané smyčce a odvozujeme chování vlastních hodnot v lakunách a rezonancí systému.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
41
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
—
UT code for WoS article
000259364200010
EID of the result in the Scopus database
—