Multidimensional first and second order symmetric Strang splitting for hyperbolic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00161007" target="_blank" >RIV/68407700:21340/10:00161007 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multidimensional first and second order symmetric Strang splitting for hyperbolic systems
Original language description
We propose an algebraic basis for symmetric Strang splitting for first and second order accurate schemes for hyperbolic systems in N dimensions. Examples are given for two and three dimensions. Optimal stability is shown for symmetric systems. Lack of strong stability is shown for a non-symmetric example. Some numerical examples are presented for some Euler-like constant coefficient problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC528" target="_blank" >LC528: Centre of Laser Plasma</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
1-2
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
—
UT code for WoS article
000272696600007
EID of the result in the Scopus database
—