Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00172456" target="_blank" >RIV/68407700:21340/10:00172456 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Two-dimensional symmetric and antisymmetric generalizations of exponential and cosine functions
Original language description
The properties of the four families of the recently introduced special functions of two real variables, denoted here by E? and cos?, are studied. The superscripts + and - refer to the symmetric and antisymmetric functions, respectively. The functions areconsidered in all details required for their exploitation in Fourier expansions of digital data, sampled on square grids of any density, and for general position of the grid in the real plane relative to the lattice defined by the underlying group theory. The quality of continuous interpolation, resulting from the discrete expansions, is studied, exemplified, and compared for some model functions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
—
UT code for WoS article
000275032100051
EID of the result in the Scopus database
—