On Brlek-Reutenauer conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00183922" target="_blank" >RIV/68407700:21340/11:00183922 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/11:00183922
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2011.06.031" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2011.06.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2011.06.031" target="_blank" >10.1016/j.tcs.2011.06.031</a>
Alternative languages
Result language
angličtina
Original language name
On Brlek-Reutenauer conjecture
Original language description
Brlek and Reutenauer conjectured that any infinite word u with language closed under reversal satisfies the equality 2D(u) = Sigma(+infinity)(n=0) T(u)(n) in which D(u) denotes the defect of u and T(u)(n) denotes C(u)(n + 1) - C(u)(n) + 2 - P(u)(n + 1) -P(u)(n), where C(u) and P(u) are the factor and palindromic complexity of u, respectively. BrIek and Reutenauer verified their conjecture for periodic infinite words. Using their result, we prove the conjecture for uniformly recurrent words. Moreover, we summarize results and some open problems related to defects, which may be useful for the proof of the Brlek-Reutenauer conjecture in full generality.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
412
Issue of the periodical within the volume
41
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
5649-5655
UT code for WoS article
000295498100001
EID of the result in the Scopus database
—