All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Proof of the Brlek-Reutenauer conjecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00201614" target="_blank" >RIV/68407700:21340/13:00201614 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21240/13:00201614

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.tcs.2012.12.024" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2012.12.024</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2012.12.024" target="_blank" >10.1016/j.tcs.2012.12.024</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Proof of the Brlek-Reutenauer conjecture

  • Original language description

    Brlek and Reutenauer conjectured that any infinite word u with language closed under reversal satisfies the equality 2D(u)= sum_{n=0}^{+infty}T_u(n) in which D(u) denotes the defect of u and T_u(n) denotes C_u(n+1)-C_u(n)+2 - P_u(n)-P_u(n+1), where C_u(n) and P_u(n) are the factor and palindromic complexity of u, respectively. This conjecture was verified for periodic words by Brlek and Reutenauer themselves. Using their results for periodic words, we have recently proved the conjecture for uniformly recurrent words. In the present article we prove the conjecture in its general version by a new method without exploiting the result for periodic words.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0584" target="_blank" >GA201/09/0584: Algebraic and combinatorial aspects of aperiodic structures</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    475

  • Issue of the periodical within the volume

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

    120-125

  • UT code for WoS article

    000315309600013

  • EID of the result in the Scopus database