Proof of the Brlek-Reutenauer conjecture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00201614" target="_blank" >RIV/68407700:21340/13:00201614 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/13:00201614
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2012.12.024" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2012.12.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2012.12.024" target="_blank" >10.1016/j.tcs.2012.12.024</a>
Alternative languages
Result language
angličtina
Original language name
Proof of the Brlek-Reutenauer conjecture
Original language description
Brlek and Reutenauer conjectured that any infinite word u with language closed under reversal satisfies the equality 2D(u)= sum_{n=0}^{+infty}T_u(n) in which D(u) denotes the defect of u and T_u(n) denotes C_u(n+1)-C_u(n)+2 - P_u(n)-P_u(n+1), where C_u(n) and P_u(n) are the factor and palindromic complexity of u, respectively. This conjecture was verified for periodic words by Brlek and Reutenauer themselves. Using their results for periodic words, we have recently proved the conjecture for uniformly recurrent words. In the present article we prove the conjecture in its general version by a new method without exploiting the result for periodic words.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0584" target="_blank" >GA201/09/0584: Algebraic and combinatorial aspects of aperiodic structures</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
475
Issue of the periodical within the volume
—
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
120-125
UT code for WoS article
000315309600013
EID of the result in the Scopus database
—