Antimorphisms generating (-beta)-integers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00187720" target="_blank" >RIV/68407700:21340/11:00187720 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Antimorphisms generating (-beta)-integers
Original language description
This contribution is devoted to the study of positional numeration systems with negative base introduced by Ito and Sadahiro in 2009, called $(-beta)$-expansions. We give an admissibility criterion for a more general case of $(-beta)$-expansions and define the set of $(-beta)$-integers, denoted by $mathbb{Z}_{-beta}$. We give a description of distances within $mathbb{Z}_{-beta}$ and show that this set can be coded by a biinfinite word over an infinite alphabet, which is a fixed point of an antimorphism.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Doktorandské dny 2011
ISBN
978-80-01-04907-5
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
25-29
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Praha
Event date
Nov 11, 2011
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—