All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finite beta-expansions with negative bases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00308832" target="_blank" >RIV/68407700:21340/17:00308832 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10474-017-0711-9" target="_blank" >http://dx.doi.org/10.1007/s10474-017-0711-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10474-017-0711-9" target="_blank" >10.1007/s10474-017-0711-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finite beta-expansions with negative bases

  • Original language description

    The finiteness property is an important arithmetical property of beta-expansions. We exhibit classes of Pisot numbers $beta$ having the negative finiteness property, that is the set of finite (-beta)-expansions is equal to Z[beta^(-1)]. For a class of numbers including the Tribonacci number, we compute the maximal length of the fractional parts arising in the addition and subtraction of (-beta)-integers. We also give conditions excluding the negative finiteness property.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Hungarica

  • ISSN

    0236-5294

  • e-ISSN

    1588-2632

  • Volume of the periodical

    152

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    485-504

  • UT code for WoS article

    000407230000013

  • EID of the result in the Scopus database

    2-s2.0-85017637412