All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Purely periodic expansions in systems with negative base

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00192718" target="_blank" >RIV/68407700:21340/13:00192718 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.springerlink.com/content/e3488335063132k1/" target="_blank" >http://www.springerlink.com/content/e3488335063132k1/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10474-012-0261-0" target="_blank" >10.1007/s10474-012-0261-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Purely periodic expansions in systems with negative base

  • Original language description

    We study the question of pure periodicity of expansions in the negative base numeration system. In analogy of Akiyama's result for positive Pisot unit base $beta$, we find a sufficient condition so that there exist an interval $J$ containing the origin such that the $(-beta)$-expansion of every rational number from $J$ is purely periodic. We focus on the case of quadratic bases and demonstrate the following difference between the negative and positive bases: It is known that the finiteness property (${rm Fin}(beta)=Z[beta]$) is not only sufficient, but also necessary in the case of positive quadratic and cubic bases. We show that ${rm Fin}(-beta)=Z[beta]$ is not necessary in the case of negative bases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0584" target="_blank" >GA201/09/0584: Algebraic and combinatorial aspects of aperiodic structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Hungarica

  • ISSN

    0236-5294

  • e-ISSN

  • Volume of the periodical

    139

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    208-227

  • UT code for WoS article

    000317969300002

  • EID of the result in the Scopus database