Transversality Condition in Sufficient Stochastic Maximum Principle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00192621" target="_blank" >RIV/68407700:21340/11:00192621 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Transversality Condition in Sufficient Stochastic Maximum Principle
Original language description
In this article, the sufficient Pontryagin's maximum principle for infinite horizon discounted stochastic control problem is given. The sufficiency is ensured by an additional assumption of concavity of the Hamiltonian function. In the paper, it is assumed that the control domain $U$ is a convex set and the control enters also the diffusion part of the state equation. Due to our setting, the Hamiltonian function has to be modified using an additional term coming from Lyapunov function for the FBSDE system. The result of this paper extends the one in cite{veverka} where the knowledge of the terminal condition of the associated BSDE is assumed. In this paper, to overcome this unrealistic assumption, we establish a so called transversality condition. Inthe end, we apply the result to an example from finance with known solution to conclude that our approach gives the same result.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Doktorandské dny 2011
ISBN
978-80-01-04907-5
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
275-284
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Praha
Event date
Nov 11, 2011
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—