Quantizations on the circle and coherent states
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00193460" target="_blank" >RIV/68407700:21340/12:00193460 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/45/24/244027" target="_blank" >http://dx.doi.org/10.1088/1751-8113/45/24/244027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/45/24/244027" target="_blank" >10.1088/1751-8113/45/24/244027</a>
Alternative languages
Result language
angličtina
Original language name
Quantizations on the circle and coherent states
Original language description
We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S^1 including the Aharonov-Bohm-type quantum description. Coherent states are constructed by Perelomov's method as group-related coherent states generated by Weyl operators on the quantum phase space . Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction, we use the analogy with our quantization and coherent states over a finite periodic chain where the quantum phase space was ZxS^1. The coherent states constructed in this work are shown to satisfy the resolution of unity. To compare them with canonical coherent states, some of their further properties are also studied demonstrating similarities as well as substantial differences.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
24
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
"244027.1"-"244027.15"
UT code for WoS article
000305394700028
EID of the result in the Scopus database
—