Coherent states for quantum compact groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F96%3A00151841" target="_blank" >RIV/68407700:21340/96:00151841 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Coherent states for quantum compact groups
Original language description
Coherent states are introduced and their properties are discussed for simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation. The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA201%2F94%2F0708" target="_blank" >GA201/94/0708: Stability and Instability in Quantum Systems.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1996
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
182
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
31
Pages from-to
221-251
UT code for WoS article
A1996VW44600008
EID of the result in the Scopus database
2-s2.0-0040518868