Quantum dressing orbits on compact groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F93%3A00151839" target="_blank" >RIV/68407700:21340/93:00151839 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/BF02097059" target="_blank" >http://dx.doi.org/10.1007/BF02097059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/BF02097059" target="_blank" >10.1007/BF02097059</a>
Alternative languages
Result language
angličtina
Original language name
Quantum dressing orbits on compact groups
Original language description
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient ''coherent states'' are introduced and a correspondence between classical and quantum observables is given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA202%2F93%2F1314" target="_blank" >GA202/93/1314: Nonlinear Models in Quantum Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1993
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
152
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
30
Pages from-to
97-126
UT code for WoS article
A1993KN23000006
EID of the result in the Scopus database
2-s2.0-21144464289