Asymptotic Dynamics of Coined Quantum Walks on Percolation Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00196520" target="_blank" >RIV/68407700:21340/12:00196520 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevLett.108.230505" target="_blank" >http://dx.doi.org/10.1103/PhysRevLett.108.230505</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.108.230505" target="_blank" >10.1103/PhysRevLett.108.230505</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic Dynamics of Coined Quantum Walks on Percolation Graphs
Original language description
Quantum walks obey unitary dynamics: they form closed quantum systems. The system becomes open if the walk suffers from imperfections represented as missing links on the underlying basic graph structure, described by dynamical percolation. Openness of the system's dynamics creates decoherence, leading to strong mixing. We present a method to analytically solve the asymptotic dynamics of coined, percolated quantum walks for a general graph structure. For the case of a circle and a linear graph we derivethe explicit form of the asymptotic states. We find that a rich variety of asymptotic evolutions occur: not only the fully mixed state, but other stationary states; stable periodic and quasiperiodic oscillations can emerge, depending on the coin operator, the initial state, and the topology of the underlying graph.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review Letters
ISSN
0031-9007
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
23
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
—
UT code for WoS article
000304806100003
EID of the result in the Scopus database
—