Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00358546" target="_blank" >RIV/68407700:21340/22:00358546 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevA.105.062417" target="_blank" >https://doi.org/10.1103/PhysRevA.105.062417</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.105.062417" target="_blank" >10.1103/PhysRevA.105.062417</a>
Alternative languages
Result language
angličtina
Original language name
Key graph properties affecting transport efficiency of flip-flop Grover percolated quantum walks
Original language description
Quantum walks exhibit properties without classical analogues. One of those is the phenomenon of asymptotic trapping???there can be nonzero probability of the quantum walker being localized in a finite part of the underlying graph indefinitely even though locally all directions of movement are assigned nonzero amplitudes at each step. We study quantum walks with the flip-flop shift operator and the Grover coin, where this effect has been identified previously. For the version of the walk further modified by a random dynamical disruption of the graph (percolated quantum walks) we provide a recipe for the construction of a complete basis of the subspace of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs. We show how the position of the source and sink together with the graph geometry and its modifications affect the excitation transport. This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport and we design graphs exhibiting this pronounced behavior. In some cases this even provides closed-form formulas for the asymptotic transport probability in dependence on some structure parameters of the graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Volume of the periodical
105
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000812346700007
EID of the result in the Scopus database
2-s2.0-85133335291