All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Percolated quantum walks with a general shift operator: From trapping to transport

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335681" target="_blank" >RIV/68407700:21340/19:00335681 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevA.99.042129" target="_blank" >https://doi.org/10.1103/PhysRevA.99.042129</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevA.99.042129" target="_blank" >10.1103/PhysRevA.99.042129</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Percolated quantum walks with a general shift operator: From trapping to transport

  • Original language description

    We present an alternative definition of discrete-time coined quantum walks convenient for capturing a rather broad spectrum of a walker's behavior on arbitrary graphs. It includes and covers both the geometry of possible walker's positions with interconnecting links and the prescribed rule in which directions the walker will move at each vertex. While the former allows for the analysis of inhomogeneous quantum walks on graphs with vertices of varying degree, the latter offers us to choose, investigate, and compare quantum walks with different shift operators. The synthesis of both key ingredients constitutes a well-suited playground for analyzing percolated quantum walks on a quite general class of graphs. Analytical treatment of the asymptotic behavior of percolated quantum walks is presented and worked out in details for the Grover walk on graphs with maximal degree 3. We find that for these walks with cyclic shift operators, the existence of an edge-3 coloring of the graph allows for nonstationary asymptotic behavior of the walk. For different shift operators, the general structure of localized attractors is investigated, which determines the overall efficiency of a source-to-sink quantum transport across a dynamically changing medium. As a simple nontrivial example of the theory, we treat a single-excitation transport on a percolated cube.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PHYSICAL REVIEW A

  • ISSN

    2469-9926

  • e-ISSN

    2469-9934

  • Volume of the periodical

    99

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    000466372200004

  • EID of the result in the Scopus database

    2-s2.0-85065316476