Percolated quantum walks with a general shift operator: From trapping to transport
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335681" target="_blank" >RIV/68407700:21340/19:00335681 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevA.99.042129" target="_blank" >https://doi.org/10.1103/PhysRevA.99.042129</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.99.042129" target="_blank" >10.1103/PhysRevA.99.042129</a>
Alternative languages
Result language
angličtina
Original language name
Percolated quantum walks with a general shift operator: From trapping to transport
Original language description
We present an alternative definition of discrete-time coined quantum walks convenient for capturing a rather broad spectrum of a walker's behavior on arbitrary graphs. It includes and covers both the geometry of possible walker's positions with interconnecting links and the prescribed rule in which directions the walker will move at each vertex. While the former allows for the analysis of inhomogeneous quantum walks on graphs with vertices of varying degree, the latter offers us to choose, investigate, and compare quantum walks with different shift operators. The synthesis of both key ingredients constitutes a well-suited playground for analyzing percolated quantum walks on a quite general class of graphs. Analytical treatment of the asymptotic behavior of percolated quantum walks is presented and worked out in details for the Grover walk on graphs with maximal degree 3. We find that for these walks with cyclic shift operators, the existence of an edge-3 coloring of the graph allows for nonstationary asymptotic behavior of the walk. For different shift operators, the general structure of localized attractors is investigated, which determines the overall efficiency of a source-to-sink quantum transport across a dynamically changing medium. As a simple nontrivial example of the theory, we treat a single-excitation transport on a percolated cube.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Volume of the periodical
99
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
—
UT code for WoS article
000466372200004
EID of the result in the Scopus database
2-s2.0-85065316476