Moebius numeration systems with discrete groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00198407" target="_blank" >RIV/68407700:21340/12:00198407 - isvavai.cz</a>
Result on the web
<a href="http://kmlinux.fjfi.cvut.cz/~hejdato1/main/www/papers/Hejda_2012_MastersThesis.pdf" target="_blank" >http://kmlinux.fjfi.cvut.cz/~hejdato1/main/www/papers/Hejda_2012_MastersThesis.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Moebius numeration systems with discrete groups
Original language description
The theory of Möbius numeration systems brings a general construction of numeration systems, including the most studied ones - positional numeration systems and continued fractions. The advantages of this construction are a good geometrical exposition and an algebraic approach - numeration system is a subset of a fifinitely-generated group. This thesis investigates the existence of numeration systems such that the corresponding group is discrete and is generated by rational Möbius transformations, i.e.linear or linear-fractional functions with rational coefficients.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů