Bounds on the period of the continued fraction after a Möbius transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00336580" target="_blank" >RIV/68407700:21240/20:00336580 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/20:00336580
Result on the web
<a href="https://doi.org/10.1016/j.jnt.2019.10.027" target="_blank" >https://doi.org/10.1016/j.jnt.2019.10.027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2019.10.027" target="_blank" >10.1016/j.jnt.2019.10.027</a>
Alternative languages
Result language
angličtina
Original language name
Bounds on the period of the continued fraction after a Möbius transformation
Original language description
We study Möbius transformations (also known as linear fractional transformations) of quadratic numbers. We construct explicit upper and lower bounds on the period of the continued fraction expansion of a transformed number as a function of the period of the continued fraction expansion of the original number. We provide examples that show that the bound is sharp.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Number Theory
ISSN
0022-314X
e-ISSN
1096-1658
Volume of the periodical
212
Issue of the periodical within the volume
July
Country of publishing house
US - UNITED STATES
Number of pages
51
Pages from-to
122-172
UT code for WoS article
000523512000008
EID of the result in the Scopus database
2-s2.0-85082201936