On the rank of universal quadratic forms over real quadratic fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401337" target="_blank" >RIV/00216208:11320/19:10401337 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OlR9fHSUbi" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OlR9fHSUbi</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25537/dm.2018v23.15-34" target="_blank" >10.25537/dm.2018v23.15-34</a>
Alternative languages
Result language
angličtina
Original language name
On the rank of universal quadratic forms over real quadratic fields
Original language description
We study the minimal number of variables required by a totally positive definite diagonal universal quadratic form over a real quadratic field Q(root D) and obtain lower and upper bounds for it in terms of certain sums of coefficients of the associated continued fraction. We also estimate such sums in terms of D and establish a link between continued fraction expansions and special values of L-functions in the spirit of Kronecker's limit formula.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Documenta Mathematica
ISSN
1431-0643
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
23
Country of publishing house
DE - GERMANY
Number of pages
20
Pages from-to
15-34
UT code for WoS article
000468272500002
EID of the result in the Scopus database
2-s2.0-85068102521