All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Finiteness and periodicity of continued fractions over quadratic number fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00355955" target="_blank" >RIV/68407700:21340/22:00355955 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.24033/bsmf.2845" target="_blank" >https://doi.org/10.24033/bsmf.2845</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24033/bsmf.2845" target="_blank" >10.24033/bsmf.2845</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Finiteness and periodicity of continued fractions over quadratic number fields

  • Original language description

    We consider continued fractions with partial quotients in the ring of integers of a quadratic number field K and we prove a generalization to such continued fractions of the classical theorem of Lagrange. A particular example of these continued fractions is the β-continued fraction introduced by Bernat. As a corollary of our theorem we show that for any quadratic Perron number β, the β-continued fraction expansion of elements in Q(β) is either finite of eventually periodic. The same holds for β being a square root of an integer. We also show that for certain 4 quadratic Perron numbers β, the β-continued fraction represents finitely all elements of the quadratic field Q(β), thus answering questions of Rosen and Bernat. Based on the validity of a conjecture of Mercat, these are all quadratic Perron numbers with this feature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin de la Société Mathématique de France

  • ISSN

    0037-9484

  • e-ISSN

    2102-622X

  • Volume of the periodical

    150

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    33

  • Pages from-to

    77-109

  • UT code for WoS article

    000853257900003

  • EID of the result in the Scopus database