All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On periodic representations in non-Pisot bases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00305566" target="_blank" >RIV/68407700:21340/17:00305566 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/article/10.1007/s00605-017-1063-9" target="_blank" >http://link.springer.com/article/10.1007/s00605-017-1063-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-017-1063-9" target="_blank" >10.1007/s00605-017-1063-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On periodic representations in non-Pisot bases

  • Original language description

    We study periodic expansions in positional number systems with a base βelementC, |β|>1, and with coefficients in a finite set of digits AcC. We are interested in determining those algebraic bases for which there exists AcQ(β), such that all elements of Q(β) admit at least one eventually periodic representation with digits in A. In this paper we prove a general result that guarantees the existence of such an A. This result implies the existence of such an A when β is a rational number or an algebraic integer with no conjugates of modulus 1. We also consider periodic representations of elements of Q(β) for which the maximal power of the representation is proportional to the absolute value of the represented number, up to some universal constant. We prove that if every element of Q(β) admits such a representation then β must be a Pisot number or a Salem number. This result generalises a well known result of Schmidt (Bull Lond Math Soc 12(4):269–278, 1980).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

    1436-5081

  • Volume of the periodical

    184

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000407394400001

  • EID of the result in the Scopus database

    2-s2.0-85019673306