All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Periodic representations in algebraic bases

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401326" target="_blank" >RIV/00216208:11320/19:10401326 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o8dHPx3uKH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o8dHPx3uKH</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00605-017-1151-x" target="_blank" >10.1007/s00605-017-1151-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Periodic representations in algebraic bases

  • Original language description

    We study periodic representations in number systems with an algebraic base (not a rational integer). We show that if has no Galois conjugate on the unit circle, then there exists a finite integer alphabet A such that every element of Q() admits an eventually periodic representation with base and digits in A.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monatshefte für Mathematik

  • ISSN

    0026-9255

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    188

  • Country of publishing house

    AT - AUSTRIA

  • Number of pages

    11

  • Pages from-to

    109-119

  • UT code for WoS article

    000454836600005

  • EID of the result in the Scopus database

    2-s2.0-85040088211