Periodic representations in algebraic bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401326" target="_blank" >RIV/00216208:11320/19:10401326 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o8dHPx3uKH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o8dHPx3uKH</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-017-1151-x" target="_blank" >10.1007/s00605-017-1151-x</a>
Alternative languages
Result language
angličtina
Original language name
Periodic representations in algebraic bases
Original language description
We study periodic representations in number systems with an algebraic base (not a rational integer). We show that if has no Galois conjugate on the unit circle, then there exists a finite integer alphabet A such that every element of Q() admits an eventually periodic representation with base and digits in A.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04703Y" target="_blank" >GJ17-04703Y: Quadratic forms and numeration systems over number fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Volume of the periodical
2019
Issue of the periodical within the volume
188
Country of publishing house
AT - AUSTRIA
Number of pages
11
Pages from-to
109-119
UT code for WoS article
000454836600005
EID of the result in the Scopus database
2-s2.0-85040088211