On the generalizations of the unit sum number problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00198915" target="_blank" >RIV/68407700:21340/12:00198915 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the generalizations of the unit sum number problem
Original language description
This contribution is devoted to the study of representations of algebraic integers of a number field as linear combinations of units with coefficients coming from a fixed finite set, and as sums of elements having small norms in absolute value. These theorems can be viewed as results concerning a generalization of the so-called unit sum number problem, as well. Beside these, extending previous related results we give an upper bound for the length of arithmetic progressions of t-term sums of algebraic integers having small norms in absolute value.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Doktorandské dny 2012
ISBN
978-80-01-05138-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
15-19
Publisher name
Česká technika - nakladatelství ČVUT
Place of publication
Praha
Event location
Praha
Event date
Nov 16, 2012
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—