Representing algebraic integers as linear combinations of units
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00196440" target="_blank" >RIV/68407700:21340/14:00196440 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10998-014-0020-9" target="_blank" >http://dx.doi.org/10.1007/s10998-014-0020-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10998-014-0020-9" target="_blank" >10.1007/s10998-014-0020-9</a>
Alternative languages
Result language
angličtina
Original language name
Representing algebraic integers as linear combinations of units
Original language description
In this paper we consider representations of algebraic integers of a number field as linear combinations of units with coefficients coming from a fixed small set, and as sums of elements having small norms in absolute value. These theorems can be viewedas results concerning a generalization of the so-called unit sum number problem, as well. Beside these, extending previous related results we give an upper bound for the length of arithmetic progressions of t-term sums of algebraic integers having smallnorms in absolute value.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Periodica Mathematica Hungarica
ISSN
0031-5303
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
135-142
UT code for WoS article
000338187500003
EID of the result in the Scopus database
—